Showing posts with label fats. Show all posts
Showing posts with label fats. Show all posts

High-Fat Diets, Obesity and Brain Damage

Many of you have probably heard the news this week:

High-fat diet may damage the brain
Eating a high-fat diet may rapidly injure brain cells
High fat diet injures the brain
Brain injury from high-fat foods

Your brain cells are exploding with every bite of butter!  Just kidding.  The study in question is titled "Obesity is Associated with Hypothalamic Injury in Rodents and Humans", by Dr. Josh Thaler and colleagues, with my mentor Dr. Mike Schwartz as senior author (1).  We collaborated with the labs of Drs. Tamas Horvath and Matthias Tschop.  I'm fourth author on the paper, so let me explain what we found and why it's important.  

The Questions

Among the many questions that interest obesity researchers, two stand out:
  1. What causes obesity?
  2. Once obesity is established, why is it so difficult to treat?
Our study expands on the efforts of many other labs to answer the first question, and takes a stab at the second one as well.  Dr. Licio Velloso and collaborators were the first to show in 2005 that inflammation in a part of the brain called the hypothalamus contributes to the development of obesity in rodents (2), and this has been independently confirmed several times since then.  The hypothalamus is an important brain region for the regulation of body fatness, and inflammation keeps it from doing its job correctly.

The Findings

Read more »

Seed Oils and Body Fatness-- A Problematic Revisit

Anthony Colpo recently posted a discussion of one of my older posts on seed oils and body fat gain (1), which reminded me that I need to revisit the idea.  As my knowledge of obesity and metabolism has expanded, I feel the evidence behind the hypothesis that seed oils (corn, soybean, etc.) promote obesity due to their linoleic acid (omega-6 fat) content has largely collapsed.

Read more »

Food Reward: a Dominant Factor in Obesity, Part III

Low-Fat Diets

In 2000, the International Journal of Obesity published a nice review article of low-fat diet trials.  It included data from 16 controlled trials lasting from 2-12 months and enrolling 1,910 participants (1).  What sets this review apart is it only covered studies that did not include instructions to restrict calorie intake (ad libitum diets).  On average, low-fat dieters reduced their fat intake from 37.7 to 27.5 percent of calories.  Here's what they found:
Read more »

Clarifications About Carbohydrate and Insulin

My statements about carbohydrate and insulin in the previous post seem to have kicked up some dust!  Some people are even suggesting I've gone low-fat!  I'm going to take this opportunity to be more specific about my positions.

I do not think that post-meal insulin spikes contribute to obesity, and they may even oppose it.  I'm not aware of anyone who researches metabolism for a living who thinks post-meal insulin spikes contribute to obesity, and after having looked into it, I understand why.  It's not a controversial issue in my field as far as I can tell. Elevated fasting insulin is a separate issue-- that's a marker of insulin resistance.  It's important not to confuse the two.  Does insulin resistance contribute to obesity?  I don't know, but it's hypothetically possible since insulin acts like leptin's kid brother in some ways.  As far as I can tell, starch per se and post-meal insulin spikes do not lead to insulin resistance.
Read more »

Healthy Skeptic Podcast and Reader Questions

Chris Kresser, Danny Roddy and I just finished recording the podcast that will be released on May 24th.  It went really well, and we think you'll find it informative and maybe even practical!

Unfortunately, we only got around to answering three of the questions I had selected:
  1. How does one lose fat?
  2. What do I (Stephan) eat?
  3. Why do many people gain fat with age, especially postmenopausal women?
I feel guilty about that, so I'm going to answer three more right now.

Read more »

US Omega-6 and Omega-3 Fat Consumption over the Last Century

Omega-6 and omega-3 polyunsaturated fats (PUFA) are essential nutrients that play many important roles in the body. They are highly bioactive, and so any deviation from ancestral intake norms should probably be viewed with suspicion. I've expressed my opinion many times on this blog that omega-6 consumption is currently too high due to our high intake of refined seed oils (corn, soybean, sunflower, etc.) in industrial nations. Although it's clear that the quantity of omega-6 and omega-3 polyunsaturated fat have changed over the last century, no one had ever published a paper that attempted to systematically quantify it until last month (1).

Drs. Chris Ramsden and Joseph Hibbeln worked on this paper (the first author was Dr. Tanya Blasbalg and the senior author was Dr. Robert Rawlings)-- they were the first and second authors of a different review article I reviewed recently (2). Their new paper is a great reference that I'm sure I'll cite many times. I'm going to briefly review it and highlight a few key points.

1. The intake of omega-6 linoleic acid has increased quite a bit since 1909. It would have been roughly 2.3% of calories in 1909, while in 1999 it was 7.2%. That represents an increase of 213%. Linoleic acid is the form of omega-6 that predominates in seed oils.

2. The intake of omega-3 alpha-linolenic acid has also increased, for reasons that I'll explain below. It changed from 0.35% of calories to 0.72%, an increase of 109%.

3. The intake of long-chain omega-6 and omega-3 fats have decreased. These are the highly bioactive fats for which linoleic acid and alpha-linolenic acid are precursors. Arachidonic acid, DHA, DPA and EPA intakes have declined. This mostly has to do with changing husbandry practices and the replacement of animal fats with seed oils in the diet.

4. The ratio of omega-6 to omega-3 fats has increased. There is still quite a bit of debate over whether the ratios matter, or simply the absolute amount of each. I maintain that there is enough evidence from highly controlled animal studies and the basic biochemistry of PUFAs to tentatively conclude that the ratio is important. At a minimum, we know that excess linoleic acid inhibits omega-3 metabolism (3, 4, 5, 6). The omega-6:3 ratio increased from 5.4:1 to 9.6:1 between 1909 and 2009, a 78% increase.

5. The biggest factor in both linoleic acid and alpha-linolenic acid intake changes was the astonishing rise in soybean oil consumption. Soybean oil consumption increased from virtually nothing to 7.4% of total calories, eclipsing all sources of calories besides sugar, dairy and grains! That's because processed food is stuffed with it. It's essentially a byproduct of defatted soybean meal-- the second most important animal feed after corn. Check out this graph from the paper:

I think this paper is an important piece of the puzzle as we try to figure out what happened to nutrition and health in the US over the last century.

Safflower Oil Study

A few people have sent me a new study claiming to demonstrate that half a tablespoon of safflower oil a day improves insulin sensitivity, increases HDL and decreases inflammation in diabetics (1). Let me explain why this study does not show what it claims.

It all comes down to a little thing called a control group, which is the basis for comparison that you use to determine if your intervention had an effect. This study didn't have one for the safflower group. What it had was two intervention groups, one given 6.4g conjugated linoleic acid (CLA; 50% c9t11 and 50% t10c12-CLA) per day, and one given 8g safflower oil. I have to guess that this study was originally designed to test the effects of the CLA, with the safflower oil group as the control group, and that the interpretation of the data changed after the results came in. Otherwise, I don't understand why they would conduct a study like this without a control group.

Anyway, they found that the safflower oil group did better than the CLA group over 16 weeks, showing a higher insulin sensitivity, higher HDL, lower HbA1c (a marker of average blood glucose levels) and lower CRP (a marker of inflammation). But they also found that the safflower group improved slightly compared to baseline, therefore they decided to attribute the difference to a beneficial effect of safflower oil. The problem is that without a control (placebo) group for comparison, there's no way to know if the improvement would have occurred regardless of treatment, due to the season changing, more regular check-ups at the doctor's office due to participating in a study, or countless other unforeseen factors. A control group is essential for the accurate interpretation of results, which is why drug studies always have placebo groups.

What we can say is that the safflower oil group fared better than the CLA group, because there was a difference between the two. However, what I think really happened is that the CLA supplement was harmful and the small dose of safflower oil had no effect. Why? Because the t10c12 isomer of CLA, which was half their pill, has already been shown by previous well-controlled studies to reduce insulin sensitivity, decrease HDL and increase inflammatory markers at a similar dose and for a similar duration (2, 3). The safflower oil group only looked good by comparison. We can add this study to the "research bloopers" file.

It's worth noting that naturally occurring CLA mixtures, similar to those found in pastured dairy and ruminant fat, have not been shown to cause metabolic problems such as those caused by isolated t10c12 CLA.

Does Dietary Saturated Fat Increase Blood Cholesterol? An Informal Review of Observational Studies

The diet-heart hypothesis states three things:
  1. Dietary saturated fat increases blood cholesterol
  2. Elevated blood cholesterol increases the risk of having a heart attack
  3. Therefore, dietary saturated fat increases the risk of having a heart attack
To evaluate the second contention, investigators have examined the relationship between blood cholesterol and heart attack risk. Many studies including MRFIT have shown that the two are related (1):

The relationship becomes much more complex when you consider lipoprotein subtypes, density and oxidation level, among other factors, but at the very least there is an association between habitual blood cholesterol level and heart attack risk. This is what you would want to see if your hypothesis states that high blood cholesterol causes heart attacks.

Now let's turn to the first contention, the hypothesis that dietary saturated fat increases serum cholesterol. This idea is so deeply ingrained in the scientific literature that many authors don't even bother providing references for it anymore. When references are provided, they nearly always point to the same type of study: short-term controlled diet trials, in which volunteers are fed different fats for 2-13 weeks and their blood cholesterol measured (2)*. These are the studies on which the diet-heart hypothesis was built.

But now we have a problem. Nearly every high-quality (prospective) observational study ever conducted found that saturated fat intake is not associated with heart attack risk (3). So if saturated fat increases blood cholesterol, and higher blood cholesterol is associated with an increased risk of having a heart attack, then why don't people who eat more saturated fat have more heart attacks?

I'll begin to answer that question with another question: why do researchers almost never cite observational studies to support the idea that dietary saturated fat increases blood cholesterol? Surely if the hypothesis is correct, then people who habitually eat a lot of saturated fat should have high cholesterol, right? One reason may be that in most instances, when researchers have looked for a relationship between saturated fat intake and blood cholesterol, they haven't found one. Those findings have essentially been ignored, but let's have a look...

The Studies

It's difficult to do a complete accounting of these studies, but I've done my best to round them up. I can't claim this post is comprehensive, but I doubt I missed very many, and I certainly didn't exclude any that I came across. If you know of any I missed, please add them to the comments.

The earliest and perhaps most interesting study I found was published in the British Medical Journal in 1963 and is titled "Diet and Plasma Cholesterol in 99 Bank Men" (4). Investigators asked volunteers to weigh all food consumed at home for 1-2 weeks, and describe in detail all food consumed away from home. Compliance was good. This dietary accounting method was much more thorough than in most observational studies today**. Animal fat intake ranged from 55 to 173 grams per day, and blood cholesterol ranged from 154 to 324 mg/dL, yet there was no relationship whatsoever between the two. I'm looking at a graph of animal fat intake vs. blood cholesterol as I write this, and it looks like someone shot it with a shotgun at 50 yards. They twisted the data every which way, but were never able to squeeze even a hint of an association out of it:
Making the most out of the data in other ways- for example, by analysis of the men very stable in their diets, or in whom weighing of food intake was maximal, or where blood was taken close to the diet [measurement]- did not increase the correlation. Because the correlation coefficient is almost as often negative as positive, moreover, what is being discussed mostly is the absence of association, not merely association that is unexpectedly small.
The next study to discuss is the 1976 Tecumseh study (5). This was a large cardiovascular observational study conducted in Tecumseh, Michigan, which is often used as the basis for comparison for other cardiovascular studies in the literature. Using the 24 hour dietary recall method, including an analysis of saturated fat, the investigators found that:
Cholesterol and triglyceride levels were unrelated to quality, quantity, or proportions of fat, carbohydrate or protein consumed in the 24-hr recall period.
They also noted that the result was consistent with what had been reported in other previously published studies, including the Evans county study (6), the massive Israel Ischemic Heart Disease Study (7) and the Framingham study. One of the longest-running, most comprehensive and most highly cited observational studies, the Framingham study was organized by Harvard investigators and continues to this day. When investigators analyzed the relationship between saturated fat intake, serum cholesterol and heart attack risk, they were so disappointed that they never formally published the results. We know from multiple sources that they found no significant relationship between saturated fat intake and blood cholesterol or heart attack risk***.

The next study is the Bogalusa Heart Study, published in 1978, which studied the diet and health of 10 year old American children (8). This study found an association by one statistical method, and none by a second method****. They found that the dietary factors they analyzed explained no more than 4% of the variation in blood cholesterol. Overall, I think this study lends little or no support to the hypothesis.

Next is the Western Electric study, published in 1981 (9). This study found an association between saturated fat intake and blood cholesterol in middle-aged men in Chicago. However, the correlation was small, and there was no association between saturated fat intake and heart attack deaths. They cited two other studies that found an association between dietary saturated fat and blood cholesterol (and did not cite any of the numerous studies that found no association). One was a very small study conducted in young men doing research in Antarctica, which did not measure saturated fat but found an association between total fat intake and blood cholesterol (10). The other studied Japanese (Nagasaki and Hiroshima) and Japanese Americans in Japan, Hawai'i and California respectively (11).

This study requires some discussion. Published in 1973, it found a correlation between saturated fat intake and blood cholesterol in Japan, Hawai'i but not in California. The strongest association was in Japan, where going from 5 to 75 g/day of saturated fat (a 15-fold change!) was associated with an increase in blood cholesterol from about 175 to 200 mg/dL. However, I don't think this study offers much support to the hypothesis upon closer examination. Food intake in Japan was collected by 24-hour recall in 1965-1967, when the diet was mostly white rice in some areas. The lower limit of saturated fat intake in Japan was 5g/day, 1/12th what was typically eaten in Hawai'i and California, and the Japanese average was 16g, with most people falling below 10g. That is an extraordinarily low saturated fat intake. I think a significant portion of the Japanese in this study, living in the war-ravaged cities of Nagasaki and Hiroshima, were over-reliant on white rice and perhaps bordering on malnourishment.

In Japanese-Americans living in Hawai'i, over a range of saturated fat intakes between 5 and 110 g/day, cholesterol went from 210 to 220 mg/dL. That was statistically significant but it's not exactly knocking my socks off, considering it's a 22-fold change in saturated fat intake. In California, going from 15 to 110 g/day of saturated fat (7.3-fold change) was not associated with a change in blood cholesterol. Blood cholesterol was 20-30 mg/dL lower in Japan than in Hawai'i or California at any given level of saturated fat intake (e.g., Japanese eating 30g per day vs. Hawai'ians eating 30g per day). I think it's probable that saturated fat is not the relevant factor here, or at least it's being trumped by other factors. An equally plausible explanation is that people in the very low range of saturated fat intake are the rural poor who eat an impoverished diet that differs in many ways from the diets at the upper end of the range.

The most recent study was the Health Professional Follow-up study, published in 1996 (12). This was a massive, well funded study that found no hint of a relationship between saturated fat intake and blood cholesterol.

Conclusion

Of all the studies I came across, only the Western Electric study found a clear association between habitual saturated fat intake and blood cholesterol, and even that association was weak. The Bogalusa Heart study and the Japanese study provided inconsistent evidence for a weak association. The other studies I cited, including the bank workers' study, the Tecumseh study, the Evans county study, the Israel Ischemic Heart study, the Framingham study and the Health Professionals Follow-up study, found no association between the two factors.

Overall, the literature does not offer much support for the idea that long term saturated fat intake has a significant effect on the concentration of blood cholesterol. If it's a factor at all, it must be rather weak, which is consistent with what has been observed in multiple non-human species (13). I think it's likely that the diet-heart hypothesis rests in part on an over-interpretation of short-term controlled feeding studies. I'd like to see a more open discussion of this in the scientific literature. In any case, these controlled studies have typically shown that saturated fat increases both LDL and HDL, so even if saturated fat did have a small long-term effect on blood cholesterol, as hinted at by some of the observational studies, its effect on heart attack risk would still be difficult to predict.

The Diet-heart Hypothesis: Stuck at the Starting Gate
Animal Models of Atherosclerosis: LDL


* As a side note, many of these studies were of poor quality, and were designed in ways that artificially inflated the effects of saturated fat on blood lipids. For example, using a run-in period high in linoleic acid, or comparing a saturated fat-rich diet to a linoleic acid-rich diet, and attributing the differences in blood cholesterol to the saturated fat. Some of them used hydrogenated seed oils as the saturated fat. Although not always consistent, I do think that overall these studies support the idea that saturated fat does have a modest ability to increase blood cholesterol in the short term.

** Although I would love to hear comments from anyone who has done controlled diet trials. I'm sure this method had flaws, as it was applied in the 1960s.

*** Reference cited in the Tecumseh paper: Kannel, W et al. The Framingham Study. An epidemiological Investigation of Cardiovascular Diseases. Section 24: The Framingham Diet Study: Diet and the Regulation of Serum Cholesterol. US Government Printing Office, 1970.

**** Table 5 shows that the Pearson correlation coefficient for saturated fat intake vs. blood cholesterol is not significant; table 6 shows that children in the two highest tertiles of blood cholesterol have a significantly higher intake of saturated fat, unsaturated fat, total fat and sodium than the lowest tertile. The relationship between saturated fat and blood cholesterol shows no evidence of dose-dependence (cholesterol tertiles= 15.6g, 18.4g, 18.5g saturated fat). The investigators made no effort to adjust for confounding variables.

Dairy Fat and Diabetes

Introduction

Having access to embargoed news from the Annals of Internal Medicine is really fun. I get to report on important studies at the same time as the news media. But this week, I got my hands on a study that I'm not sure will be widely reported (Mozaffarian et al. Trans-palmitoleic Acid, Metabolic Risk Factors, and New-Onset Diabetes in US Adults. Ann Internal Med. 2010). Why? Because it suggests that dairy fat may protect against diabetes.

The lead author is Dr. Dariush Mozaffarian, whose meta-analysis of diet-heart controlled trials I recently criticized (1). I think this is a good opportunity for me to acknowledge that Dr. Mozaffarian and his colleagues have published some brave papers in the past that challenged conventional wisdom. For example, in a 2005 study, they found that postmenopausal women who ate the most saturated fat had the slowest rate of narrowing of their coronary arteries over time (2). It wasn't a popular finding but he has defended it. His colleague Dr. Walter Willett thinks dietary fat is fine (although he favors corn oil), whole eggs can be part of a healthy diet, and there are worse things than eating coconut from time to time. Dr. Willett is also a strong advocate of unrefined foods and home cooking, which I believe are two of the main pillars of healthy eating.

Let's hit the data


Investigators collected two measures of dairy fat intake in 3,736 Americans:
  1. 24 hour dietary recall questionnaires, six times. This records volunteers' food intake at the beginning of the study.
  2. Blood (plasma phospholipid) content of trans-palmitoleate. Dairy fat and red meat fat are virtually the only sources of this fatty acid, so it reflects the intake of these foods. Most of the trans-palmitoleate came from dairy in this study, although red meat was also a significant source.
After adjustment for confounding factors, trans-palmitoleate levels were associated with a smaller waist circumference, higher HDL cholesterol, lower serum triglycerides, lower C-reactive protein, lower fasting insulin and lower calculated insulin resistance. Furthermore, people with the highest trans-palmitoleate levels had 1/3 the risk of developing diabetes over the three years volunteers were followed. Keep in mind, however, that this is an observational study and does not prove that dairy fat prevents diabetes.

Even though certain blood fatty acids partially represent food intake, they can also represent metabolic conditions. For example, people on their way to type II diabetes tend to have more saturated blood lipids, independent of diet (3, 4)*. So it's reassuring to see that dietary trans-palmitoleate intake was closely related to the serum level. The investigators also noted that "greater whole-fat dairy consumption was associated with lower risk for diabetes," which increases my confidence that serum trans-palmitoleate is actually measuring dairy fat intake to some degree. However, in the end, I think the striking association they observed was partially due to dairy fat intake, but mostly due to metabolic factors that had nothing to do with dairy fat**.

Here's a nice quote:
Our findings support potential metabolic benefits of dairy consumption and suggest that trans-palmitoleate may mediate these effects***. They also suggest that efforts to promote exclusive consumption of low-fat and nonfat dairy products, which would lower population exposure to trans-palmitoleate, may be premature until the mediators of the health effects of dairy consumption are better established.
Never thought I'd see the day! Not bad, but I can do better:
Our findings support eating as much butter as possible****. Don't waste your money on low-fat cream, either (half-n-half). We're sorry that public health authorities have spent 30 years telling you to eat low-fat dairy when most studies are actually more consistent with the idea that dairy fat reduces the risk obesity and chronic disease.
What are these studies suggesting that dairy fat may be protective, you ask? That will be the topic of another post, my friends.


*Probably due to uncontrolled de novo lipogenesis because of insulin resistance. Many studies find that serum saturated fatty acids are higher in those with metabolic dysfunction, independent of diet. They sometimes interpret that as showing that people are lying about their diet, rather than that serum saturated fatty acids don't reflect diet very well. For example, in one study I cited, investigators found no relationship between dietary saturated fat and diabetes risk, but they did find a relationship between serum saturated fatty acids and diabetes risk (5). They then proceeded to refer to the serum measurements as "objective measurements" that can tease apart "important associations with diabetes incidence that may be missed when assessed by [food questionnaires]." They go on to say that serum fatty acids are "useful as biomarkers for fatty acid intake," which is true for some fatty acids but not remotely for most of the saturated ones, according to their own study. Basically, they try to insinuate that dietary saturated fat is the culprit, and the only reason they couldn't measure that association directly is that people who went on to develop diabetes inaccurately reported their diets! A more likely explanation is that elevated serum saturated fatty acids are simply a marker of insulin resistance (and thus uncontrolled de novo lipogenesis), and had nothing to do with diet.

**Why do I say that? Because mathematically adjusting for dairy and meat fat intake did not substantially weaken the association between phospholipid trans-palmitoleate and reduced diabetes risk (Table 4). In other words, if you believe their math, dairy/meat fat intake only accounted for a small part of the protective association. That implies that healthy people maintain a higher serum phospholipid trans-palmitoleate level than unhealthy people, even if both groups eat the same amount of trans-palmitoleate. If they hadn't mentioned that full-fat dairy fat intake was directly associated with a lower risk of diabetes, I would not find the study very interesting because I'd have my doubts that it was relevant to diet.

***I find it highly doubtful that trans-palmitoleate entirely mediates the positive health outcomes associated with dairy fat intake. I think it's more likely to simply be a marker of milk fat, which contains a number of potentially protective substances such as CLA, vitamin K2, butyric acid, and the natural trans fats including trans-palmitoleate. In addition, dairy fat is low in omega-6 polyunsaturated fat. I find it unlikely that their fancy math was able to tease those factors apart, because those substances all travel together in dairy fat. trans-palmitoleate pills are not going to replace butter.

****That's a joke. I think butter can be part of healthy diet, but that doesn't mean gorging on it is a good idea. This study does not prove that dairy fat prevents diabetes, it simply suggests that it may.

Diet-Heart Controlled Trials: a New Literature Review

Many controlled studies have measured the cardiovascular effects of replacing animal ("saturated") fats with seed oils (predominantly the omega-6 polyunsaturated fat linoleic acid) in humans. A number of these studies recorded heart attacks and total mortality during the following 1-8 years. Several investigators have done meta-analyses (literature reviews) to try to tease out overall conclusions from these studies.

I'm pleased to point out a new meta-analysis of these controlled trials by Dr. Christopher Ramsden and colleagues (1). This paper finally cleans up the mess that previous meta-analyses have made of the diet-heart literature. One recent paper in particular by Dr. Dariush Mozaffarian and colleagues concluded that overall, the controlled trials show that replacing animal fat with linoleic acid (LA)-rich seed oils reduces heart attack risk (2). I disagreed strongly with their conclusion because I felt their methods were faulty (3).

Dr. Ramsden and colleagues pointed out several fundamental flaws in the review paper by Dr. Mozaffarian and colleagues, as well as in the prevailing interpretation of these studies in the scientific literature in general. These overlap with the concerns that I voiced in my post (4):
  1. Omission of unfavorable studies, including the Rose corn oil trial and the Sydney diet-heart trial.
  2. Inclusion of weak trials with major confounding variables, such as the Finnish mental hospital trial.
  3. Failure to distinguish between omega-6 and omega-3 fatty acids.
  4. Failure to acknowledge that seed oils often replaced large quantities of industrial trans fats in addition to animal fat in these trials.
Dr. Ramsden and colleagues accounted for all of these factors in their analysis, which has never been done before. They chose inclusion criteria* that made sense, and stuck with them. In addition, they did an impressive amount of historical work, digging up old unpublished data from these trials to determine the exact composition of the control and experimental diets. The paper is published in the British Journal of Nutrition, an excellent journal, and overall is written in a scientific and professional manner.

What did they find?
  • Interventions that replaced animal and trans fat with seed oils that were rich in LA but low in omega-3 caused a non-significant trend toward increased heart attacks (13% increase) and overall mortality.
  • Interventions that replaced animal and trans fat with a combination of LA and omega-3 fats significantly reduced heart attacks (by 22%). The numbers for total mortality followed a similar trend.
In other words, LA-rich seed oils do not prevent heart attacks (and may actually promote them), but correcting an omega-3 deficiency and reducing industrial trans fat intake may be protective. This is similar to what I've been saying for a while now, based on my own interpretation of the same studies and others. However, Dr. Ramsden and colleagues have taken the idea to a new level by their thorough and sophisticated detective work and analysis. For example, I didn't realize that in virtually all of these controlled trials, the intervention group reduced its trans fat intake substantially in addition to reducing animal fat. From the paper:
...experimental diets replaced common ‘hard’ margarines, industrial shortenings and other sources of [trans fat] in all seven of the [controlled trials] included in the meta-analysis by Mozaffarian et al. The mean estimated [trans fat] content of the seven control diets was 3·0 [% of calories] (range 1·5–9·6 [%]).
...the displacement of [trans fat], rather than the substitution of mixed n-3/n-6 [polyunsaturated fat] for [saturated fat], may account for some or all of the 22% reduction in non-fatal [heart attacks and heart attack] death in our meta-analysis. By contrast, the increased [heart attack] risks from n-6 specific [polyunsaturated fat] diets in our meta-analysis may be underestimated as n-6 [polyunsaturated fat] also replaced substantial quantities of [trans fat] (Table 3). The consistent trends towards increased [heart attack] risk of n-6 specific [polyunsaturated fat] diets may have become significant if the n-6 [polyunsaturated fat] replaced only [saturated fat], instead of a combination of [saturated fat] and [trans fat].
In other words, it looks like trans fat is probably the issue, not animal fat, but these trials replaced both simultaneously so we can't know for sure. I will note here that trans fat does not generally promote atherosclerosis (thickening and hardening of arteries) in animal models, so if it does truly increase heart attack risk as many studies suggest, it's probably through a mechanism that is independent of atherosclerosis.

The article also contains an excellent discussion of the Finnish mental hospital trial (5, 6) and why it was excluded from the meta-analysis, in which Dr. Ramsden and colleagues point out major design flaws, some of which I was not aware of. For example, trans fat intake was on average 13 times higher in the control groups than in the experimental groups. In addition, one of the control groups received more than twice as much of the antipsychotic drug thioridazine, which is known to be highly toxic to the heart, as any other group. Ouch. I'm glad to see this study finally discussed in an open and honest manner. I discussed my own problems with the Finnish trial in an earlier post (7).

I was also glad to see an open discussion of the Oslo Diet-heart study (8), in which diet changes led to a reduction in heart attack risk over five years. Dr. Mozaffarian and colleagues included it in their analysis as if it were a controlled trial in which animal fat was replaced by seed oils only. In reality, the investigators changed many variables at once, which I had also pointed out in my critique of Dr. Mozaffarian's meta-analysis (9). Here's what Dr. Ramsden and colleagues had to say about it:
First, experimental dieters were instructed to substitute fish, shellfish and ‘whale beef’ for meats and eggs, and were actually supplied with ‘considerable quantities of Norwegian sardines canned in cod liver oil, which proved to be popular as a bread spread’(32)... Second, the experimental group consumed massive amounts of soybean oil, which provided large quantities of both LA (15·6 en %) and ALA (2·7 en %). ALA consumption was about 4·5 times average US intake(42), or about twelve typical flax oil pills (1 g pill ¼ 560 mg ALA) per d. In addition, the fish and cod liver oil consumption provided Oslo (598N latitude) dieters with 610 IU (15·25 mg) of daily vitamin D3, recently linked to lower blood pressure, plaque stabilisation, and reduced [heart attack risk] (64). Furthermore, experimental dieters were encouraged to eat more nuts, fruits, and vegetables; to limit animal fats; and to restrict their intake of refined grains and sugar.
trans fat intake was also reduced substantially by excluding margarine in the experimental group. Other review papers have used this trial as a justification to replace animal fat with seed oils. Hmm... The only reason they get away with this is because the trial was published in 1966 and almost no one today has actually read it.

One criticism I have of Dr. Ramsden's paper is that they used the Oslo trial in their analysis, despite the major limitation described above. However, they were extremely open about it and discussed the problem in detail. Furthermore, the overall result would have been essentially the same even if they had excluded the Oslo trial from the analysis.

Overall, the paper is an excellent addition to the literature, and I hope it will bring a new level of sophistication to the dialogue on dietary prevention of cardiovascular disease. In the meantime, brace yourselves for an avalanche of criticism from the seed oil brigade.


* Guidelines that determine which studies to include in the analysis. For example, you want to exclude any study that wasn't randomized, because it will not be interpretable from a statistical standpoint. You also want to exclude trials where major variables differ between groups besides the specific variable you're trying to test. The Finnish mental hospital trial fails by both criteria.