Showing posts with label metabolic syndrome. Show all posts
Showing posts with label metabolic syndrome. Show all posts

The Brain Controls Insulin Action

Insulin regulates blood glucose primarily by two mechanisms:
  1. Suppressing glucose production by the liver
  2. Enhancing glucose uptake by other tissues, particularly muscle and liver
Since the cells contained in liver, muscle and other tissues respond directly to insulin stimulation, most people don't think about the role of the brain in this process.  An interesting paper just published in Diabetes reminds us of the central role of the brain in glucose metabolism as well as body fat regulation (1).  Investigators showed that by inhibiting insulin signaling in the brains of mice, they could diminish insulin's ability to suppress liver glucose production by 20%, and its ability to promote glucose uptake by muscle tissue by 59%.  In other words, the majority of insulin's ability to cause muscle to take up glucose is mediated by its effect on the brain. 

Read more »

Fast Food, Weight Gain and Insulin Resistance

CarbSane just posted an interesting new study that fits in nicely with what we're discussing here.  It's part of the US Coronary Artery Risk Development in Young Adults (CARDIA) study, which is a long-term observational study that is publishing many interesting findings.  The new study is titled "Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis" (1).  The results speak for themselves, loud and clear (I've edited some numbers out of the quote for clarity):
Read more »

Food Reward: a Dominant Factor in Obesity, Part III

Low-Fat Diets

In 2000, the International Journal of Obesity published a nice review article of low-fat diet trials.  It included data from 16 controlled trials lasting from 2-12 months and enrolling 1,910 participants (1).  What sets this review apart is it only covered studies that did not include instructions to restrict calorie intake (ad libitum diets).  On average, low-fat dieters reduced their fat intake from 37.7 to 27.5 percent of calories.  Here's what they found:
Read more »

Oltipraz

Oltipraz is a drug that was originally used to treat intestinal worms. It was later found to prevent a broad variety of cancers (1). This was attributed to its ability to upregulate cellular detoxification and repair mechanisms.

Researchers eventually discovered that oltipraz acts by activating Nrf2, the same transcription factor activated by ionizing radiation and polyphenols (2, 3, 4). Nrf2 activation mounts a broad cellular protective response that appears to reduce the risk of multiple health problems.

A recent paper in Diabetologia illustrates this (5). Investigators put mice on a long-term refined high-fat diet, with or without oltipraz. These carefully crafted diets are very unhealthy indeed, and when fed to rodents they rapidly induce fat gain and something that looks similar to human metabolic syndrome (insulin resistance, abdominal adiposity, blood lipid disturbances). Adding oltipraz to the diet prevented the fat gain, insulin resistance and inflammatory changes that occurred in the refined high-fat diet group.

The difference in fasting insulin was remarkable. The mice taking oltipraz had 1/7 the fasting insulin of the refined high-fat diet comparison group, and 1/3 the fasting insulin of the low-fat comparison group! Yet their glucose tolerance was normal, indicating that they were not low on insulin due to pancreatic damage. The low-fat diet they used in this study was also refined, which is why the two control groups (high-fat and low-fat) didn't diverge more in body fatness and other parameters. If they had used a group fed unrefined rodent chow as the comparator, the differences between groups would have been larger.

This shows that in addition to preventing cancer, Nrf2 activation can attenuate the metabolic damage caused by an unhealthy diet in rodents. Oltipraz illustrates the power of the cellular hormesis response. We can exploit this pathway naturally using polyphenols and other chemicals found in whole plant foods.